重组人白蛋白(Recombumin®)的应用


重组人白蛋白(Recombumin®)的应用

——细胞和基因治疗的开发

重组人白蛋白(Recombumin®)的应用


◆优化细胞治疗效果


细胞治疗,包括基于免疫细胞和干细胞治疗,是目前开发中的一些十分复杂的疗法。在医学研究的科学前沿,细胞治疗为更广泛使用的治疗选择提供了一种有吸引力的替代方法。然而,该领域也面临着多个方面的挑战,如升级、物流和确保效果一致性。因此,我们需要优化细胞性能以获得对患者而言可行的细胞产品和安全的治疗方案。

 


◆用于干细胞培养、冻存和制剂的重组人白蛋白


白蛋白是细胞培养介质的常见成分,众所周知,它可以促进多种类型细胞的生长,如间充质干细胞(MSC),胚胎干细胞(ESC),诱导多能干细胞(iPSC)和免疫细胞。

虽然白蛋白在细胞培养中的确切作用尚未完全明了,但是经过数十年的使用,其在细胞治疗应用中的相关性和效果是毋庸置疑的。如今,白蛋白的数种生物学特性已在整个细胞疗法价值链中得到了证明,包括:

● 与金属或其他有益分子实体的运输和络合,为持续的细胞活力创造了理想的微环境

● 充当丰富的营养源,确保条件满足,特别是细胞增殖期间。

● 用作pH缓冲液,防止分化过程中产生不良影响。

● 我们的高纯度重组白蛋白能够在冻存过程中保持细胞的活性。

● 白蛋白可作为毒素和其他活性氧的清除剂,从培养到患者的所有过程中均能保护细胞免受化学应激

● 由于白蛋白倾向于均匀分布在溶液之中,因此可以为介质提供绝缘效果

● 白蛋白在细胞培养,冷冻保存和干细胞制剂中表现出这些特性的组合。我们的重组人白蛋白产品(Recombumin®)正是为了增强这些功能特性而开发的,让您对您的细胞治疗更有信心。

 


◆疫苗稳定

 

维持疫苗稳定性


因可以为患者提供宝贵的治疗和预防效果,疫苗仍然是药物研究的重要领域。

与其他生物制剂一样,疫苗同样很容易受到如温度变化和其他物理条件等环境压力的影响。因此,在疫苗的制造、存储和运送过程中保持其稳定性是一项艰巨的任务。

例如,面向发展中国家流通的疫苗通常需要面临高温考验,因此这些疫苗的热稳定性非常重要。在这种情况下,疫苗能保持稳定性的话可以降低成本,从而为全世界的人们提供更有效的疫苗接种计划。即使选择冻干产品作为配方,温度敏感性疫苗的细胞活力和疫苗效力也会降低。因此,辅料的选择对于降低导致疫苗灭活的负面影响至关重要[Life Science Journal 6(2009)13-17]。

 


使用白蛋白克服疫苗挑战


● 保护疫苗免受剪切应力:重组人白蛋白对病毒载体疫苗具有绝缘作用,可在生产和处理过程中防止其受到物理损伤,保持疫苗的效力和疗效。

● 防止表面吸附:下游加工过程中疫苗颗粒吸附在表面上的流失会导致产量显著下降。此外,还可能吸附到最终疫苗容器上导致剂量控制不当。通过使用Recombumin® 包被其表面,可以防止这些问题发生。

● 热稳定性:温敏性疫苗会在运输过程中因冻融和/或温度波动失去活性和疗效。Recombumin® 可以将白蛋白的高热稳定性拓展至其共同配制的疫苗中。

 

经验证,Recombumin® 的这些特性可广泛用于疫苗构建,例如减毒活疫苗、全病毒灭活亚单位疫苗、病毒载体疫苗、病毒样颗粒(VLP)疫苗和包膜疫苗。其应用在全球范围内超过7,000万剂的疫苗之中:如默沙东的儿童疫苗MMR® II和ProQuad®,证实了Recombumin® 是一种在维持疫苗产品稳定性方面的经过验证且安全的辅料。

 


◆蛋白质和多肽制剂

 

鉴于蛋白质和多肽的不稳定性,优化此类治疗药物的稳定性是任何药物研发计划中不可或缺但却极具挑战性的目标。解决这些挑战便可充分利用药物的全部治疗潜力,确保理想的治疗选择。

 

制剂挑战


制剂产品 “完整性”的缺失可能会削弱药物的安全性和活性。蛋白和多肽稳定性较弱,并且可以通过以下几种机制降解:

● 疏水相互作用和多肽纤维化可能导致聚集亚可见颗粒的出现,从而导致药效降低和免疫原性增加。

● 与表面的结合可引起结构变化,进而导致自缔合和/或聚集。除此之外,与药物容器的非特异性吸附可能会导致材料损耗和剂量使用错误。

● 化学应激,如被氧化性物质降解,会引起一系列功能改变,例如结合活性改变、聚集和蛋白水解敏感性增加、细胞摄

● 取的增加或减少以及免疫原性改变。

 


选择正确的制剂策略

 

制药公司通常都在标准的辅料范围内进行制剂开发。尽管这些试剂中很多是有效的稳定剂,但就局部毒性和潜在免疫原性而言,仍然需要谨慎使用。通常使用的是辅料混合物。但在某些情况下,要将各种“成分”组合成需求的稳定水平是非常困难的。于是,随着制剂逐渐复杂,制药公司对先进的解决方案需求也相应增加。

白蛋白是自然界自身的稳定剂,具有体内运输、保护重要分子的功能。我们的重组人白蛋白——Recombumin® 利用了白蛋白的多功能特性,可用作有效的通用稳定剂。它特别适合用于生物药物(如蛋白质或多肽等难以在传统制剂方案中保持稳定的物质)的精简制剂方案。

 


◆医疗器械涂层

 

使用重组人白蛋白对生物相容性医疗器械涂层

 

医疗器械领域上的创新持续为我们提供更新颖的治疗选择。但是,医疗器械开发商也面临着产品安全和生物相容性的挑战。为确保患者在使用医疗设备时不会引起不良反应,医疗器械的生物相容性至关重要。

由于白蛋白的天然特性,其被广泛应用于医疗器械行业,例如用作透析时使用的支架和导管的涂层,以提高其生物相容性。

 


白蛋白的天然表面涂层能力

 

经验证,白蛋白几乎可以在单个分子层内覆盖了疏水和亲水表面。这意味着仅凭少量的白蛋白也可以有效覆盖大面积的表面。我们的重组人白蛋白(rAlb)产品,已证明:

1-2 mg的白蛋白可有效覆盖1 m的表面

通过使用白蛋白涂覆在设备表面形成的生物界面,限制原本不相容的表面对患者的暴露,从而提高了产品安全性。我们的rAlb产品Recombumin® 的高纯度和稳定的性质能够始终如一地提供相同的表面覆盖率。这使得Recombumin® 特别适合用于医疗器械行业,因为它大限度地减少了对复杂放行程序和产品性能监控的需要。另外,由于重组蛋白的重组性质,可以排除人源性病原体和病毒的风险,进一步保证了安全的产品。

更多产品信息请点击查看:重组人白蛋白Recombumin® 

LBIS® 尿白蛋白检测试剂盒 自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒
自我免疫疾病 肾病研究

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

自我免疫疾病 肾病研究LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒

白蛋白检测用 ELISA Kit

■ LBIS® Albumin Mouse ELISA Kit

■ LBIS® Albumin Rat ELISA Kit

追加双板试剂盒

标准曲线范围:50~1,000 ng/mL

◆特点

● 短时间测定(总反应时间:2小时2分)

● 可微量样品测定(标准操作法为5μL)

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测试精度和告再现性

◆精度测试

● 组内变异(5次重复测定、3个样品): 平均 C.V. 值为 10% 以下

● 组间变异(3次重复测定、3个样品、3天): 平均 C.V. 值为 10% 以下

◆样品:血清或血浆、尿液

● 血浆采血推荐使用肝素

● 用本试剂盒配备的缓冲液稀释检体,稀释范围如下:


稀释倍数

血浆或血清检体:1万~5万倍

尿液检体:100 倍


8W

12W

16w

20w

24w

32w

40w

MRL/lpr,♂

8.9(5.3)

3.7(2.7)

30.1(5.7)

3,504(4,012)

2,100(3,990)

MRL/lpr,♀

2.5(0.6)

4.5(3.6)

2,055(3,244)

435(481)

436(616)

NZBWF1,♀

3.2(3.0)

4.6(2.0)

3.3(2.2)

3.1(1.8)

476(681)

3,471(4,288)

白蛋白检测试剂盒(免疫比浊法)

Turbidimetric Immuno Assay Kit (TIA Kit)

LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究

■ LBIS® Albumin-Monkey(S-type)

■ LBIS® Albumin-Rat(S-type)

※ 图片为 LBIS® Albumin-Rat(S-type)

◆特点

● 测试范围

  猴子 2.5~202.5 μg/mL

  小鼠/大鼠 6.17~500 μg/mL

● 样品:尿液或血清

● 对猴子、小鼠、大鼠白蛋白各自使用专用抗体会分别产生特异反应。

● 使用普通的生化学自动分析装置,可短时间(10分钟)测定。

● 测试范围广,再现性高。

● 自定分析装置测试,不受手工操作影响。

● 为日本国内厂商的自动分析装置提供参数。(一部分除外)

◆精度测试(同时测试猴子用、小鼠用、大鼠用)

● 组内变异(5次重复检测、3个样品):平均 C.V. 值为 10% 以下

● 组间变异(3次重复检测、3个样品、4天):平均 C.V. 值为 10% 以下


相关资料


LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究 LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究 LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究
AKRAL020S说明书 ELISA试剂盒选择指南①② ELISA试剂盒选择指③④
LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒                              自我免疫疾病 肾病研究
AKRAL021S说明书 AKRAL120说明书 AKRAL121说明书

参考文献

◆Lbis® 小鼠白蛋白 ELISA试剂的相关参考文献


 1.

The proteasome inhibitor bortezomib attenuates renal fibrosis in mice via the suppression of TGF-β1. Zeniya M, Mori T, Yui N, Nomura N, Mandai S, Isobe K, Chiga M, Sohara E, Rai T, Uchida S. Sci Rep. 2017 Oct 12;7(1):13086.


 2.

A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. Yu Guan, Daisuke Nakano, Yifan Zhang, Lei Li, Wenhua Liu, Motohiro Nishida, Takashige Kuwabara, Asahiro Morishita, Hirofumi Hitomi, Kiyoshi Mori, Masashi Mukoyama, Tsutomu Masaki, Katsuya Hirano, Akira Nishiyama. Journal of Pharmacological Sciences, Available online 14, Sep 2017.


 3.

Rosuvastatin pretreatment suppresses distant organ injury following unilateral renal ischemia-reperfusion in hypertensive Dahl salt-sensitive rats. Kanno M, Nakayama M, Zhu WJ, Hayashi Y, Kazama JJ. Nephrology (Carlton). 2017 Sep 22.


 4.

Podocan Is Expressed in Blood and Adipose Tissue and Correlates Negatively With the Induction of Diabetic Nephropathy ? Yasunori Nio, Mitsugi Okawara, Shoki Okuda, Takanori Matsuo, Naoki Furuyama. Journal of the Endocrine Society, Vol.1, Issue 7, Jul 2017, Pages 772-786,


 5.

LXR, PPARγ, and PPARδ Agonists Are Not Sufficient to Demonstrate Therapeutic Potential against Mouse Model of Systemic Lupus Erythematosus. Toyota Tatebe N, Sunahori Watanabe K, Zeggar S, Hiramatsu S, Yan M, Katsuyama T, Katsuyama E, Watanabe H, Sada K, Wada J. Open Journal of Rheumatology and Autoimmune Diseases, 2017, 7, 128-136


 6.

Potent long-acting rhFGF21 analog for treatment of diabetic nephropathy in db/db and DIO mice. Zhao L, Wang H, Xie J, Chen Z, Li X, Niu J. BMC Biotechnol. 2017 Jul 4;17(1):58.


 7.

Renoprotective effect of a novel selective PPARα modulator K-877 in db/db mice: A role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway. Maki T, Maeda Y, Sonoda N, Makimura H, Kimura S, Maeno S, Takayanagi R, Inoguchi T. Metabolism. 2017 Jun;71:33-45.


 8.

Dab1 Contributes to Angiotensin II-Induced Apoptosis via p38 Signaling Pathway in Podocytes. Gao Z, Chen X, Zhu K, Zeng P, Ding G. Biomed Res Int. 2017;2017:2484303.


 9.

Combination of cilostazol and probucol protected podocytes from lipopolysaccharide-induced injury by both anti-inflammatory and anti-oxidative mechanisms. He P, Kawamura H, Takemoto M, Maezawa Y, Ishikawa T, Ishibashi R, Sakamoto K, Shoji M, Hattori A, Yamaga M, Ide S, Ide K, Hayashi A, Tokuyama H, Kobayashi K, Yokote K. J Nephrol. 2016 Dec 22.


10.

Tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2, suppresses renal damage in KKAy/Ta mice, obese and type 2 diabetic animals. Ishibashi Y, Matsui T, Yamagishi SI. Diab Vasc Dis Res. 2016 Jul 12.


11.

Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Wang Z, Hwang SH, Lee SY, Lim SS. Nutr Res Pract. 2016 Jun;10(3):282-7.


12.

Nuclear factor erythroid 2-related factor 2 is a critical target for the treatment of glucocorticoid-resistant lupus nephritis. Ebihara S, Tajima H, Ono M. Arthritis Res Ther. 2016 Jun 14;18(1):139.


13.

A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Ishibashi R, Takemoto M, Akimoto Y, Ishikawa T, He P, Maezawa Y, Sakamoto K, Tsurutani Y, Ide S, Ide K, Kawamura H, Kobayashi K, Tokuyama H, Tryggvason K, Betsholtz C, Yokote K. Sci Rep. 2016 May 16;6:25955.


14.

Treatment with anti-IL-6 receptor antibody prevented increase in serum hepcidin levels and improved anemia in mice inoculated with IL-6-producing lung carcinoma cells. Noguchi-Sasaki M, Sasaki Y, Shimonaka Y, Mori K, Fujimoto-Ouchi K. BMC Cancer. 2016 Apr 11;16:270.


15.

Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice. Sugimoto M, Wakabayashi M, Shimizu Y, Yoshioka T, Higashino K, Numata Y, Okuda T, Zhao S, Sakai S, Igarashi Y, Kuge Y. PLoS One. 2016 Mar 24;11(3):e0152191.


16.

Chronic Administration of Visfatin Ameliorated Diabetic Nephropathy in Type 2 Diabetic Mice. Kang YS, Lee MH, Song HK, Kim JE, Ghee JY, Cha JJ, Lee JE, Kim HW, Han JY, Cha DR. Kidney Blood Press Res. 2016;41(3):311-24.


17.

Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney. Morita T, Nakano D, Kitada K, Morimoto S, Ichihara A, Hitomi H, Kobori H, Shiojima I, Nishiyama A. Eur J Pharmacol. Vol.756, p85-91, Jun 2015.


18.

Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney. Morita T, Nakano D, Kitada K, Morimoto S, Ichihara A, Hitomi H, Kobori H, Shiojima I, Nishiyama A. Eur J Pharmacol. Mar 2015.


19.

C-type natriuretic peptide attenuates lipopolysaccharide-induced acute lung injury in mice. Kimura T, Nojiri T, Hosoda H, Ishikane S, Shintani Y, Inoue M, Miyazato M, Okumura M, Kangawa K. J Surg Res. Vol.194(2), p631-7, Apr 2015.


20.

Myocardial infarction accelerates glomerular injury and microalbuminuria in diabetic rats via local hemodynamics and immunity. Dong Z, Gong K, Huang D, Zhu W, Sun W, Zhang Y, Xin P, Shen Y, Wu P, Li J, Lu Z, Zhang X, Wei M. Int J Cardiol.Vol.179, p397-408, Jan 2015.


21.

Effects of Toll-like receptor antagonist 4,5-dihydro-3-phenyl-5-isoxasole acetic acid on the progression of kidney disease in mice on a high-fat diet. Min HS., Kim JE., Lee MH., Song HK., Lee MJ., Lee JE., Kim HW., Cha JJ., Hyun YY., Han JY., Cha DR., Kang YS. Kidney Research and Clinical Practice, 2014.


22.

Ameliorates the Progression of Type 2 Diabetic Nephropathy by Exerting Antioxidative Effects. Ishizawa K., Izawa-Ishizawa Y., Yamano N., Urushihara M., Sakurada T., Imanishi M., Fujii S., Nuno A., Miyamoto L., Kihira Y., Ikeda Y., Kagami S., Kobori H., Tamaki T. PLOS one, 2014


23.

T olvaptan delays the onset of end-stage renal disease in a polycystic kidney disease model by suppressing the increases in kidney volume and renal injury. Aihara M., Fujiki H., Mizuguchi H., Hattori K., Ohmoto K., Ishikawa M., Nagano K. and Yamamura Y. JPET, Feb 2014.

24.

Local Mineralocorticoid Receptor Activation and the Role of Rac1 in Obesity-Related Diabetic Kidney Disease. Yoshida S., Ishizawa K., Ayuzawa N., Ueda K., Takeuchi M., Kawarazaki W., Fujita T., Nagase M.  Nephron Exp Nephrol, Vol.126, p16-24, 2014.


25.

Renin inhibition ameliorates renal damage through prominent suppression of both angiotensin I and II in human renin angiotensinogen transgenic mice with high salt loading. Yoshida S., Ishizawa K., Ayuzawa N., Ueda K., Takeuchi M., Kawarazaki W., Fujita T., Nagase M. Clinical and Experimental Nephrology, Oct 2013.


26.

Fibroblast Growth Factor 21 Improves Insulin Resistance and Ameliorates Renal Injury in db/db Mice. Kim HW., Lee JE., Cha JJ., Hyun YY., Kim JE., Lee MH., Song HK., Nam DH., Han JY., Han SY., Han KH., Kang YS. and Cha DR. Endocrinology, Vol.154(9), Sep 2013.


27.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J., Inoguchi T., Sasaki S., Maeda Y., McCarty MF., Fujii M., Ikeda N., Kobayashi K., Sonoda N., Takayanagi R. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, R110-120, Jun 2013.


28.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J., Inoguchi T., Sasaki S., Maeda Y., McCarty MF., Fujii M., Ikeda N., Kobayashi K., Sonoda N., Takayanagi R. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, R110-120, Jun 2013.


29.

Celastrol, an NF-κB Inhibitor, Improves Insulin Resistance and Attenuates Renal Injury in db/db Mice. J.E.Kim, M.H.Lee, D.H.Nam, H.K.Song, Y.S.Kang, J.E.Lee, H.W.Kim, J.J.Cha, Y.Y.Hyun, S.Y.Han, K.H.Han, J.Y.Han, D.R.Cha. PLOS one 2013.


30.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J, InoguchiT, SasakiS, MaedaY, McCarty M F, Fujii M, Ikeda N, Kobayashi K, Sonoda N and Takayanagi R. AJP – Regu Physiol,Vo.304(2),p110-120 Jan 2013.


31.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. J.Zheng, T.Inoguchi, S.Sasaki, Y.Maeda, M.F.McCarty, M.Fujii, N.Ikeda, K.Kobayashi, N.Sonoda, R.Takayanagi. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, Jan 2013.


32.

Add-On Aliskiren Elicits Stronger Renoprotection Than High-Dose Valsartan in Type 2 Diabetic KKAy Mice That Do Not Respond to Low-Dose Valsartan. Lei B, Nakano D, Fan Y-Y, Kitada K, Hitomi H, Kobori H, Mori H, Masaki T and Nishiyama A. J Pharmacol Sci,Vol.119(2), p131-138,Jun 2012.


33.

Aldosterone Does Not Contribute to Renal p21 Expression During the Development of Angiotensin II-Induced Hypertension in Mice. Nakano D, Lei B, Kitada K, Hitomi H, Kobori H, Mori H, Deguchi K, Masaki T, Minamino T and Nishiyama A. Am J Hypertens, Vol.25(3), p354-358, Mar 2012.


34.

Blockade of Cannabinoid Receptor 1 Improves Insulin Resistance, Lipid Metabolism, and Diabetic Nephropathy in db/db Mice. D. H. Nam., M. H. Lee., J. E. Kim., H. K. Song., Y. S. Kang., J. E. Lee., H. W. Kim., J. J. Cha., Y. Y. Hyun., S. H. Kim., S. Y. Han., K. H. Han, J. Y. Han and Dae Ryong Cha. Endocrinology, Vol.153, No.3, p1387-1396, Mar 2012.


35.

An Angiotensin II Type 1 Receptor Blocker Prevents Renal Injury via Inhibition of the Notch Pathway in Ins2 Akita Diabetic Mice. M. Koshizaka., M. Takemoto., S. Sato., H. Tokuyama., M. Fujimoto., E. Okabe., R. Ishibashi., T. Ishikawa., Y. Tsurutani., S. Onishi., M. Mezawa., P. He., S. Honjo., S. Ueda., Y. Saito and K. Yokote. Experimental Diabetes Research, Vol.2012.


36.

Advanced-glycation-end-product-cholesterol-aggregated-protein accelerates the proliferation of mesangial cells mediated by transforming-growth-factor-beta 1 receptors and the ERK-MAPK pathway. Hirasawa Y, Sakai T, Ito M, Yoshimura H, Feng Y, Nagamatsu T. European Journal of Pharmacology, Vol.672(1-3), p159-168, Dec 2011.


37.

Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. S. Sekiya., A. Suzuki. Nature 475,390-393(2011)


38.

Aliskiren improves insulin resistance and ameliorates diabetic vascular complications in db/db mice. Y. S. Kang., M. H. Lee., H. K. Song., Y. Y. Hyun., J. J. Cha., G. J. Ko., S. H. Kim., J. E. Lee., J. Y. Han. and D. R. Cha. Nephrol. Dial. Transplant. (2011) 26 (4): 1194-1204.


39.

Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. N. N.-Alvarez., A. S.-Gutierrez., Y. Chen., J. C.-Corbalan., W. Hassan., S. Kobayashi., Y. Kondo., M. Iwamuro., K. Yamamoto., E. Kondo., N. Tanaka., I. J. Fox., N. Kobayashi. Journal of Hepatology Vol. 52(2), p211-219, 2010.


40.

CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kang,Y.S.,Lee,M.H.,Song,H.K.,Ko,G.J.,Kwon,O.S.,Lim,T.K.,Kim,S.H.,Han,S.Y.,Hyun,K. Kidney International, Vol.78, p883-894, November(1), 2010


41.

Effect of interleukin-6 receptor blockage on renal injury in apolipoprotein E-deficient mice. Tomiyama-Hanayama M, Rakugi H, Kohara M, Mima T, Adachi Y, Ohishi M, Katsuya T, Hoshida Y, Aozasa K, Ogihara T and Nishimoto N. AJP – Renal Physiol, Vol.297(3), p679-684, Sep 2009.


42.

Elevated Urinary Cr Loss Induces a Reduction in Renal Cr Concentration and the Negative Cr Balance in Streptozotocin-Induced Diabetic Mice. MITA Y, ISHIHARA K, ISHIGURO M, TAKEDA M, HATTORI R, MURAKAMI K, YAMADA A, YASUMOTO K. Journal of Nutritional Science and Vitaminology,Vol. 54(4), p303-308, 2008.


43.

Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y and Fujita T. NTURE MEDFICINE, Vol.14(12), p1370-1376, Dec 2008.


44.

Rubratoxin B induces interleukin-6 secretion in mouse white Adipose tissues and 3T3-L1 adipocytes. Keiko Iwashita,Hitoshi Nagashima. Toxicology Letters, Vol.182, p79-83, 2008.


45.

Deterioration of atherosclerosis in mice lacking angiotensin II type 1A receptor in bone marrow-derived cells. Kato,H., Ishida,J., Nagano,K., Honjo,K., Sugaya,T., Takeda,N., Sugiyama,F., Yagami,K., Fujita,T., Nangaku,M., and Fukamizu, A. Lab Invest., Vol.88(7), p731-9, 2008.


46.

Differentiation of mouse and human embryonic stem cells into hepatic lineages. Shiraki,N., Umeda,K., Sakashita,N., Takeya,M., Kume,K., and Kume, S. Genes to Cells, Vol.13, p731-746, 2008.


47.

Effect of Lactobacillus jonsonii La1 on immune function and serum albumin in aged and malnourished aged mice. Kaburagi, T., Yamano, T., Fukushima, Y, Yoshino, H., Mito, N., and Sato, K. Nutrition Vol.24, p342-350, 2007.


48.

Differentiation of mouse embryonic stem cells to hepatocyto-like cells by co-culture with human liver nonparenchymal cell lines. Soto-Gutierrez, A., Navarro-Alvarez, N., Zhao, D., Rivas, J.D., Rivas-Carillo, J.D., Lebkowski, J., Tanaka, N., Fox, I.J., and Kobayashi, N. Nature Protocols. Electronic Edition Vol.2, p347-356, 2007.


49.

Construction and transplantation of an engineered hepatic tissue using a polyaminourethane-coated nonwoven polytetrafluoroethylene fabric. Soto-Gutierrez, A., Navarro-Alvarez, N., Rivas, J.D., Tanaka, K., Chen, Y., Misawa, H., Okitsu, T., Noguchi, H., Tanaka, N., and Kobayashi, N. Transplantation, Vol.83, p129-137, 2007.


50.

Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Fujii, M., Inoguchi, T., Maeda, Y., Sasaki, S., Sawada, F., saito, R., Kobayashi, K., Sumitomo, H., and Takayanagi, R. Kidney International, Vol.72, p473-480, 2007.


51.

Characterization of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Tsutsui, M., Ogawa, S., Inada, Y., Tomioka, E., Kamiyoshi, A., Tanaka, S., Kishida, S., Nishiyama, M., Murakami, M., Kuroda, J., Hashikura, Y., Miyagawa, S., satoh, F., shibata, N., and Tagawa, Y. Drug Metabolism and Disposition, Vol.34, p696-701, 2006.


52.

Growth factor midkine is involved in the pathogenesis of diabetic nephropathy. Kosugi, T., Yuzawa, Y., sato, W., Kawai, H., Matsuo, S.,Takei,Y.,Muramatsu,T., and Kadomatsu,K. Am J Pathology Vol.168, p9-19, 2006.


53.

Characterization of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Tsutsui,M., Ogawa,S., Inada,Y., Tomioka,E., Kammiyoshi,A., Tanaka,S., Kishida,T., Nishiyama,M., Murakami,M., Kuroda,J., Hashikura,Y., Miyagawa,S., Satoh,F., Shibata,N., and Tagawa,Y. The American Society for Pharmacology and Experimental Thera- peutics, Vol.34, p696-701,2006.


54.

Supplementation with chromium picolinate recovers renal Cr concentration and improves carbohydrate metabolism and renal function in type 2 diabetic mice. Mita, Y., Ishihara, K., Fukuchi, Y., Fukuya, Y., and Yasumoto, K. Biological Trace Element Research, Vol.105, p229-248, 2005.


55.

6-Methylsulfinylhexyl Isothiocyanate, an Antioxidant Derived from Wasabia japonica MATUM, Ameliorates Diabetic Nephropathy in Type 2 Diabetic Mice. FUKUCHI Y, KATO Y, OKUNISHI I, MATSUTANI Y, OSAWA T, NAITO M. Food Science and Technology Research, Vol.10(3), p290-295, 2004.


56.

Tissue array substratum composed of histological sections: A new platform for orienting differentiation of embryonic stem cells towards hepatic lineage. Takeuchi, T., Ochiya, T., and Takezawa, T. Tissue Eng Part A. 2008 Feb;14(2):267-74


◆Lbis® 大鼠白蛋白 ELISA试剂盒相关参考文献


 1.

Protective Role of PEDF-Derived Synthetic Peptide Against Experimental Diabetic Nephropathy. Ishibashi Y, Matsui T, Taira J, Higashimoto Y, Yamagishi S. Horm Metab Res. 2016 Sep;48(9):613-9.


 2.

A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats. Takeshige Y, Fujisawa Y, Rahman A, Kittikulsuth W, Nakano D, Mori H, Masaki T, Ohmori K, Kohno M, Ogata H, Nishiyama A. Hypertens Res. 2016 Jun;39(6):415-22.


 3.

Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. Takakura S, Toyoshi T, Hayashizaki Y, Takasu T. Life Sci. 2016 Feb 15;147:125-31.


 4.

An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats. Masanori Nozako, Takashi Koyama, Chifumi Nagano, Makoto Sato, Satoshi Matsumoto, Kiminobu Mitani, Reiko Yasufuku, Masayuki Kohashi, and Tomohiro Yoshikawa. PLoS One. 2015; 10(11): e0143979.


 5.

Oxygenated Static Preservation of Donation after Cardiac Death Liver Grafts Improves Hepatocyte Viability and Function.. Yu J, Murakami M, Aoki T, Jiang B, Jin Z, Koizumi T, Kusano M, Kamijo R, Miyamoto Y, Enami Y, Watanabe M, Otsuka K. Eur Surg Res. 2016;56(1-2):1-18.


 6.

Chronic Running Exercise Alleviates Early Progression of Nephropathy with Upregulation of Nitric Oxide Synthases and Suppression of Glycation in Zucker Diabetic Rats. Daisuke Ito, Pengyu Cao, Takaaki Kakihana, Emiko Sato, Chihiro Suda, Yoshikazu Muroya, Yoshiko Ogawa, Gaizun Hu, Tadashi Ishii, Osamu Ito, Masahiro Kohzuki, and Hideyasu Kiyomoto. PLoS One. 2015; 10(9): e0138037.


 7.

Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. Takakura S, Toyoshi T, Hayashizaki Y, Takasu T. Life Sci. Volume 147, 15 February 2016, Pages 125–131


 8.

Automated image analysis of a glomerular injury marker desmin in SDT rats treated with losartan. Kakimoto T, Okada K, Hirohashi Y, Relator R, Kawai M, Iguchi T, Fujitaka K, Nishio M, Kato T, Fukunari A, Utsumi H. J Endocrinol, Vol.222(1), p43-51, Jul 2014.


 9.

Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Ito D., Ito O., Mori N., Cao P., Suda C., Muroya Y., Hao K., Shimokawa H., Kohzuki M. Clinical and Experimental Pharmacology and Physiology, Vol.40(9), p617-625, Sep 2013.


10.

Sulodexide improves renal function through reduction of vascular endothelial growth factor in type 2 diabetic rats. Cha JJ., Kang YS., Hyun YY., Han SY., Jee YH., Han KH., Han JY., Cha DR. Life Sciences, Vol.92(23), p1118-1124, Jun 2013.


11.

Aberrant Activation of the Intrarenal Renin-Angiotensin System in the Developing Kidneys of Type 2 Diabetic Rats. Fan YY., Kobori H., Nakano D., Hitomi H., Mori H., Masaki T., Sun YX., Zhi N., Zhang L., Huang W., Zhu B., Li P. and Nishiyama A. Horm Metab Res, Vol.45(5), p338-343, May 2013.


12.

Effects of exercise training on nitric oxide synthase in the kidney of spontaneously hypertensive rats. Ito D, Ito O, Cao P, Mori N, Suda C, Muroya Y, Takashima K, Ito S, Kohzuki M. Clinical and Experimental Pharmacology and Physiology, Vol.40(2), p74-82, Feb 2013.


13.

Renal Sympathetic Denervation Suppresses De Novo Podocyte Injury and Albuminuria in Rats With Aortic Regurgitation. Rafiq K, Noma T, Fujisawa Y, Ishihara Y, Arai Y, Nurun Nabi A H M, Suzuki F, Nagai Y, Nakano D, Hitomi H, Kitada K, Urushihara M, Kobori H, Kohno M, Nishiyama A. Circulation,Vol.125, p1402-1413,2012.


14.

GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, Yokomizo H, Hirata E, Sonoda N, Takayanagi R. Metabolism – Clinical and Experimental,Vol.61(10), p1422-1434, Oct 2012.


15.

N-type Calcium Channel Inhibition With Cilnidipine Elicits Glomerular Podocyte Protection Independent of Sympathetic Nerve Inhibition. Lei B,Nakano D, Fujisawa Y, Liu Y, Hitomi H, Kobori H, Mori H, Masaki T, Asanuma K, Tomino Y and Nishiyama A. J Pharmacol Sci, Vol.119(4), p359-367, Aug 2012.


16.

Beneficial effect of ubiquinol, the reduced form of coenzyme Q10, on cyclosporine nephrotoxicity. Ishikawa A, Homma Y. Int. braz j urol, Vol.38(2) 2012.


17.

Effect of Eplerenone, a Selective Aldosterone Blocker, on the Development of Diabetic Nephropathy in Type 2 Diabetic Rats . Ahn J H, Hong H C, Cho M J, Kim Y J, Choi H Y, Eun C R, Yang S J, Yoo H J, Kim H Y, Seo J A, Kim S G, Choi K M, Baik S H, Choi D S and Kim N H.  Diabetes Metab J, Vol36(2), p128-135, Apr 2012.


18.

P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats. X. Ji., Y. Naito., G. Hirokawa., H. Weng., Y. Hiura., R. Takahashi and N. Iwai. Hypertension Research, 35, p173-179 (February 2012)


19.

The effects of iridium on the renal function of female Wistar rats. Iavicoli I, Fontana L, Marinaccio A, Alimonti A, Pino A, Bergamaschi A, Calabrese E J. Ecotoxicology and Environmental Safety, Vol.74(7), p1795-1799, Oct 2011.


20.

Effect of methylmercury administration on choroid plexus function in rats. M. Nakamura., A. Yasutake., M. Fujimura., N. Hachiya and M. Marumoto. Archives of Toxicology Vol. 85, (2011), p911-918,


21.

Renal preservation effect of ubiquinol, the reduced form of coenzyme Q10. A. Ishikawa., H. Kawarazaki., K. Ando., M. Fujita., T. Fujita and Y. Homma. Clinical and Experimental Nephrology Vol.15, Number 1 (2011), p30-33,


22.

Effects of mineralocorticoid receptor blockade on glucocorticoid-induced renal injury in adrenalectomized rats. K. Rafiq., D. Nakano., G. Ihara., H. Hitomi., Y. Fujisawa., N. Ohashi., H. Kobori., Y. Nagai., H. Kiyomoto., M. Kohno and A. Nishiyama. J Hypertens. 2011 February; 29(2): p290-298.


23.

Regression of superficial glomerular podocyte injury in type 2 diabetic rats with overt albuminuria: effect of angiotensin II blockade. Ihara G, Kiyomoto H, Kobori H, Nagai Y, Ohashi N, Hitomi H, Nakano D, Pelisch N, Hara T, Mori T, Ito S, Kohno M and Nishiyamad A. J Hypertens, Vol.28(11), p2289-2298, Nov 2010 .


24.

Visfatin is upregulated in type-2 diabetic rats and targets renal cells. Kang Y S, Song H K, Lee M H, Ko G J, Han J Y, Han S Y, Han K H, Kim H K and Cha D R. Kidney International, Vol.78, p170-181, 2010.


25.

High Salt Intake Elevated Blood Pressure but not Changed Circadian Blood Pressure Rhythm in Otsuka Long-Evans Tokushima Fatty (OLETF) Rat. Matsumoto M, Tsujino T, Naito Y, Sakoda T, Ohyanagi M, Nonaka H and Masuyama T. Clinical and Experimental Hypertension, Vol.31(3) , p271-280, 2009


26.

Cold Preservation of the Liver With Oxygenation by a Two-Layer Method. Odaira,M., Aoki,T., Miyamoto,Y., Yasuhara,R., Jin,Z., Yu,J., Nishino,N., Yamada,K., Kusano,T., Hayashi,K., Yasuda,D., Koizumi,T., Mitamura,K., Enami,Y., Niiya,T., Murai,N., Kato,H., Shimizu,Y., Kamijyo,R., and Kusano, M. Journal of Surgical Research, Volume 152(2), p209-217, 2009.


27.

Effect of Astaxanthin in Combination with α-Tocopherol or Ascorbic Acid against Oxidative Damage in Diabetic ODS Rats. NAKANO M, ONODERA A, SAITO E, TANABE M, YAJIMA K, TAKAHASHI J, CHUYEN N V. Journal of Nutritional Science and Vitaminology, Vol.54(4), p329-334, 2008.


28.

Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Ko G J, Kang Y S, Han S Y, Lee M H, Song H K, Han K H, Kim H K, Han J Y and Cha D R. Nephrol. Dial. Transplant, Vol23(9), p2750-2760, 2008.


29.

Strict angiotensin blockade prevents the augmentation of intrarenal angiotensin II and podocyte abnormalities in type 2 diabetic rats with microalbuminuria. Nishiyama A, Nakagawa T, Kobori H, Nagai Y, Okada N, Konishi Y, Morikawa T, Okumura M, Meda I, Kiyomoto H, Hosomi N, Mori T, Ito S and Imanishie M. J Hypertens, Vol.26(9), p1849-1859, Sep 2008.


30.

Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Lee M H, Song H K, Ko G J, Kang Y S, Han S Y, Han K H, Kim H K, Han J Y and Cha D R. Kidney International, Vo.l74, p890-900, 2008.


31.

Cell processing on polyimide surface patterned by rubbing. Matsumoto,N.,Hiruma,H.,Nagaoka,S.,Fujiyama,K.,Kaneko,A., and Kawakami, H.. Polymers for Advanced Technologies, Vol.19(8), p1002-1008, 2008.


32.

Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Fujii M, Inoguchi T, Maeda Y, Sasaki S, Sawada F, Saito R, Kobayashi K, Sumimoto H and Takayanagi R. Kidney International, Vol.72, p473-480, 2007.


33.

Antidiabetic effect of long-term supplementation with Siraitia grosvenori on the spontaneously diabetic Goto-Kakizaki rat. Suzuki, Y.A., Tomoda, M., Murata Y., Inui, H., Sugiura, M., and Nakano, Y. British J Nutrition, Vol.97, p770-775, 2007.


34.

Hepatocyte transplantation from steatotic liver in a rat model. Hayashi, K., Aoki, T., Jin, Z., Wang, H., Nishino, N., Kusano, T., Yasuda, D., Koizumi, T., Enami, Y., and Odaira, M. J Surgical Research, Vol.142, p104-112, 2007


35.

Dietary nitrite inhibits early glomerular injury in streptozotocin-induced diabetic nephropathy in rats. Ohtake, K., Ishiyama, Y., Uchida, H., Muraki, E., and Kobayashi, J. Nitric Oxide, Vol.17, p75-81, 2007.


36.

High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Sugano M, Yamato H, Hayashi T, Ochiai H, Kakuchi J, Goto S, Nishijima F, Iino N, Kazama J J, Takeuchi T, Mokuda O, Ishikawa T, Okazaki R. Nutrition, Metabolism and Cardiovascular Diseases, Vol.16(7), p477-484, Oct 2006.


37.

Spironolactone ameriolates renal injuary and connective tissue growth factor expression in type II diabetic rats. Han, K.H., Kang, Y.S., Han, S.Y., Jee, Y.H., Lee, M.H., Han, J.Y., Kim, H.K., Kim, Y.S., and Cha, D.R. Kidney International, Vol.70, p111-120, 2006.


38.

High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Ye, S.H., Watanabe, J., Takai, M., Iwasaki, Y., and Ishihara, K. Biomaterials, Vol.27, p1955-1962, 2006.


39.

Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Han,S.Y., Kim, C.H., Kim, H.S., Jee, Y.H., Song, H.K., Lee, M.H., Han, K.H., Kim, H.K., Kang, Y.S., Han, J.Y., Kim, Y.S. and Cha, D.R. J Am Soc Nephrology, Vol.17, p1362-1372, 2006.


40.

Efficient in vivo xenogeneic retroviral vector-mediated gene transduction into human Hepatocytes. Kentaro Emoto, Chise Tateno, Hiroshi Hino, Hironobu Amano, Yasuhiro Imaoka, Kinji Asahina, Toshimasa, Asahara, and Katsutoshi Yoshizato. Human Gene Therapy, Vol.16, p1168-1174, 2005.


41.

In vivo engineering of metabolically active hepatic tissue in a neovascularized subcutaneous cavity. Yokoyama, T., Ohashi, K., Kuge, H., Kanehiro, H., Iwata, H., Yamato, M., and Nakajima, Y. Am J Transplantation, Vol.6, p50-59, 2005.


42.

Effect of retinoic acid in experimental diabetic nephropathy. Han, S.Y., so, G.A., Jee, Y.H., Han, K.H., Kang, Y.S., Kim, H.K., Kang, S.W., Han, D.S., Han, J.Y., and Cha, D.R. Immunol Cell Biol, Vol.82, p568-576, 2004.


43.

Enhanced activity of serum and urinary hyaluronidases in streptozotocin-induced diabetic Wister and GK rats. Ikegami-Kawai, M., Okuda, R., Nemoto, T., Inada, N., and Takahashi, T. Glycobiology, Vol.14, p65-72, 2004.


产品列表
产品编号 产品名称 产品规格 产品等级 备注
638-04309 (AKRAL-121) LBIS® Mouse Albumin ELISA kit
LBIS® 小鼠白蛋白 ELISA试剂盒 
96 tests
638-31931 (AKRAL-221)LBIS® Mouse Albumin ELISA KIT (2plate type) 96 tests×2
635-04319 (AKRAL-120)LBIS® Rat Albumin ELISA kit
LBIS® 大鼠白蛋白 ELISA试剂盒 
96 tests
631-31921 (AKRAL-220)LBIS® Rat Albumin ELISA KIT (2plate type) 96 tests×2
638-25561 (AKRAL-021S)LBIS®  Albumin-Mouse(S-type)
LBIS®  小鼠尿白蛋白检测试剂盒(S型)TIA(含量) 
60 tests
634-25301 (AKRAL-020S) LBIS®  Albumin-Rat(S-type)
LBIS®  大鼠尿白蛋白检测试剂盒(S型)TIA(含量) 
60 tests

白蛋白包被玻片

简要描述:白蛋白包被玻片 12-070-266专为配合 Cytospin 使用,玻片上标有样本收集区域

产品型号: 12-070-266

所属分类:载玻片

详情介绍

  白蛋白包被玻片 12-070-266 专为配合 Cytospin 使用,玻片上标有样本收集区域
 
  产品简介
 
  产品特色
 
  ● 专为配合 Cytospin 使用,玻片上标有样本收集区域
 
  ● 所有玻片大小均为 75×25 mm
 
  ● 提供白蛋白包被玻片,显著降低免疫组化或原位杂交的背景
 
  ● 单圈玻片:
 
  - 可选择包被或无包被
 
  ● 双圈玻片:
 
  - 两个圈旁边分别标有 1 和 2 字样,更容易辨识
 
  - 可选择包被或无包被
 
  ● 镀膜玻片:
 
  - 适用于免疫荧光,深色镀膜可阻挡 UV 光线透过
 
  - 可选择单圈或双圈
 
白蛋白包被玻片
1、您可添加内部链接, 加入其它链接、系统将自动过滤。
 
  2、插入图片时请勿盗用他人图片、以免引起纠纷。
 
  3、为了更好的优化效果,请在详细介绍内容中可加入包含产品的关键词。
 
  4、全部复制来的内容很难获得好的排名且排版错乱,建议修改调整。
 
  5、发布的产品信息中请勿带任何、等,一经发现本网有权删除相关内容;
 
  6、发布的产品信息,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
 


人血清白蛋白(重组) 无动物源成分

人血清白蛋白(重组)
无动物源成分

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

人血清白蛋白(重组)人血清白蛋白(重组)                              无动物源成分

无动物源成分

产品编号

产品名称

包装

ENZ-PRT204-0100

HSA (recombinant)
人血清白蛋白(重组)

100 µg


● 超低内毒素

● 真正人类细胞来源

● 无动物源成分



◆产品规格


别名

HSA

MW

60-65 kDa

来源

产自293T细胞。糖基化蛋白。

UniProt ID

P02768

形式

1XPBS冻干粉

纯度

≥95% (SDS-PAGE)

内毒素含量

<1 EU/µg

配制

用无菌1× PBS重溶

运输

蓝冰,避免冻结。

长期保存

-20°C

处理

开盖前离心。重溶后,根据用量分装并储存在-20℃。

科学背景

添加HSA作为载体蛋白可以增加蛋白的稳定性和延长保质期。实验中经常使用的牛血清白蛋 白(BSA)具有同样的

的,但是BSA具有动物来源的缺点并且配制时经常提高溶液的内毒素水平。在无血清、化学成分确定的培养基中

培养工程化人细胞,其表达的重组人血清白蛋白(HSA)具有超低内毒素水平,是用作载体蛋白的理想选择。



◆相关产品

产品编号

产品名称

包装

BML-SW125-0100

BSA (nitrated)

BSA(硝化)

100 µg

BML-SW126-0100

BSA (dimethylated)
牛血清白蛋白(双甲基化)

100 µg

ADI-80-1928

BSA solution (10%), (50 mL)
牛血清白蛋白溶液(10%),(50 mL)

50 mL

※ 本页面产品仅供研究用,研究以外不可使用。

Recombumin® 重组人白蛋白

Recombumin®
重组人白蛋白

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Recombumin®Recombumin®                              重组人白蛋白

重组人白蛋白

Recombumin®                              重组人白蛋白

◆产品规格


Recombumin® 产品系列为重组人白蛋白(rAlb)。作为供应商,Albumedix利用在白蛋白领域的30年经验为全球客户提供持续的法规与技术指导。

 

■ Recombumin是目前市面上质量优选的无动物来源的重组人白蛋白

■ 符合ICH Q7 cGMP质量生产标准

■ 酿酒酵母表达生产

■ 产品形态:液体

■ 50 mL小瓶或1 L BPC(根据产品不同)

■ 国际领先监管机构认可

■ Recombumin可用于制造通过批准的生物制药和医疗设备

 

◆Recombumin介绍

 

在研发生物药物时,无论研发的是蛋白质/肽疫苗还是细胞治疗产品,重要的是要保证最终疗法的活性和安全性,以确保患者获得理想的治疗效果。

该难题可通过确保优化的配方策略解决。

Recombumin是一种多功能赋形剂,其稳定性能已在多种市场产品的长期使用中得到验证。

 

◆重组人白蛋白的功能优势

 

从生产到临床使用,生物药物都面临着多种压力条件,可能使对其最终疗效产生负面影响。Recombumin是一种有效且用途广泛的稳定剂,能够保护蛋白质、肽、疫苗和细胞治疗产品免于聚集、表面吸附、氧化和沉淀。


● 防吸附

重组蛋白很容易在单一介质的单层中吸附到疏水和亲水表面,从而防止了生物药物在生产、配制和储存过程中的非特异性吸附。仅需1-2 mg Recombumin即可包被1 m2的表面。


● 防聚集

Recombumin可通过多种机制防止治疗性蛋白质与肽的聚集和颗粒形成。通过均匀地分散在溶液中可以提供绝缘性能,从而减少药物的物理不稳定性。


● 防氧化应激

Recombumin具有天然的游离硫醇基团,通过在配制时清除氧化应激引起的修饰,来保护生物治疗剂。


● 增溶作用

因其高度特异性的结合口袋和不同的极性,Recombumin具有一些独特的增溶性能,可以防止溶解度差的小分子沉淀。



与血浆衍生的人血清白蛋白(HSA)不同,rAlb提供了可靠的白蛋白来源,具有良好的批次间一致性和安全性。欲了解更多Recombumin的相关信息,请查阅我们的【白皮书】或观看我们的点播网络研讨会。

总而言之,Recombumin® 重组人白蛋白为您提供了一种安全可靠的解决方案,让您在配制原本不稳定的药物时充满信心。

※ 本页面产品仅供研究用,研究以外不可使用。

点击此处下载产品彩页,或向当地代理商索要纸质版本

点击此处进一步获取技术咨询或了解应用案例

Recombumin Prime 重组人白蛋白Prime 品牌:Albumedix


Recombumin Prime

重组人白蛋白Prime

品牌:Albumedix
CAS No.:
储存条件:2-8°C
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

200-010

10 g/50 mL 咨询


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

Recombumin Elite 重组人白蛋白 Elite 品牌:Albumedix


Recombumin Elite

重组人白蛋白 Elite

品牌:Albumedix
CAS No.:
储存条件:2-8°C
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

205-005

5 g/50 mL 咨询


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

Recombumin Elite 重组人白蛋白 Elite 品牌:Albumedix


Recombumin Elite

重组人白蛋白 Elite

品牌:Albumedix
CAS No.:
储存条件:2-8°C
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

205-100

100 g/1 L 咨询


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

HSA (recombinant) 人血清白蛋白(重组) 品牌:Enzo


HSA (recombinant)

人血清白蛋白(重组)

品牌:Enzo
CAS No.:
储存条件:-20℃
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

ENZ-PRT204-0100

100 µg

HSA (recombinant)                                                      人血清白蛋白(重组)            品牌:Enzo


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。